
insects

Article

Comparative Efficacy of Common Active Ingredients
in Organic Insecticides Against Difficult to Control
Insect Pests

Galen P. Dively *, Terrence Patton, Lindsay Barranco and Kelly Kulhanek

Department of Entomology, University of Maryland, College Park, MD 20742, USA; tpatton@umd.edu (T.P.);
lbarranc@umd.edu (L.B.); kkulhane@umd.edu (K.K.)
* Correspondence: galen@umd.edu; Tel.: +1-202-812-9828

Received: 15 August 2020; Accepted: 4 September 2020; Published: 8 September 2020
����������
�������

Simple Summary: According to USA organic standards, farmers can apply a certified allowable
insecticide when all non-chemical practices fail to control pests. However, there exists a lack of
control efficacy information to enable decision-making about which organic product works best for
a given target pest. In this study, we conducted 153 field trials on different host crops to evaluate
the control efficacy of common active ingredients in organic insecticides against insect pest groups
considered difficult to control in organic production. The performance of organic products Entrust
(spinosad), Azera (pyrethrin and azadirachtin), PyGanic (pyrethrin) and Neemix (azadirachtin) varied
widely among pest groups, as well as among pest species within a group, providing an overall
reduction in pest infestations by 73.9%, 61.7%, 48.6% and 46.1%, respectively. Those insect pests that
were particularly difficult to control included thrips, stinkbugs, cucumber beetles and fruitworms.
Several caveats pertaining to the application of the results are discussed.

Abstract: There exists a lack of control efficacy information to enable decision-making about which
organic insecticide product works best for a given insect pest. Here, we summarize results of 153 field
trials on the control efficacy of common active ingredients in organic insecticides against 12 groups of
the most difficult to control insect pests. These trials evaluated primarily the organic products Entrust
(spinosad), Azera (pyrethrin and azadirachtin), PyGanic (pyrethrin) and Neemix (azadirachtin),
which reduced pest infestations by an overall 73.9%, 61.7%, 48.6% and 46.1% respectively, averaged
across all trials. Entrust was the most effective control option for many insect pests, particularly
providing >75% control of flea beetles, Colorado potato beetle, cabbageworms and alfalfa weevil,
but was relatively ineffective against true bugs and aphids. Azera provided >75% control of green
peach aphid, flea beetles, Japanese beetle, Mexican bean beetle, potato leafhopper and cabbageworms.
PyGanic was less effective than Entrust and Azera but still provided >75% control of green peach
aphid, flea beetles and potato leafhopper. The growth inhibition effects of azadirachtin in Neemix
were particularly effective against larvae of Mexican bean beetle and Colorado potato beetle but was
generally less effective in trials with insect infestations consisting mainly of adult stages. Those insect
pests that were particularly difficult to control included thrips, stinkbugs, cucumber beetles and
fruitworms. Several caveats pertaining to the application of the results are discussed.
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1. Introduction

Organic production in the U.S. has experienced phenomenal growth since the 1990s, with
double-digit increases in the number of certified farms during most years and current production
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accounting for 5.8% of total food sales in 2019 [1]. In dealing with pest management, organic farmers
are challenged with the same insect pests confronting conventional farmers; however, they must rely
first on a system-based use of biological, cultural, mechanical and physical practices to reduce or avoid
pest problems. When these practices fail to control pests, the National Organic Program Standards [2],
NOP Code 205.206 (e), allows farmers to apply a biological, botanical or synthetic substance on their
organic crops. The Organic Materials Review Institute [3] provides a comprehensive list of 380 generic
and brand name insecticide products allowed for organic use according to the NOP rule.

Three major categories of insecticides widely used in organic production include products
formulated with spinosad, pyrethrin and neem derivatives. Collectively, these active ingredients
are contained in about one third of the insecticidal products allowed for organic use. Spinosad
is a natural product composed of a mixture of spinosyns A and D fermentation metabolites of
a soil-dwelling actinomycete, Saccharopolyspora spinosa [4]. It has broad-spectrum activity against
many major lepidopteran pests, thrips, leaf miners and certain beetle species, and is an active
ingredient in several conventional insecticides. Spinosad disrupts binding of acetylcholine in nicotinic
acetylcholine receptors at the postsynaptic cell of the insect, leading to involuntary muscle contractions,
tremors and paralysis [5]. Pyrethrins are extracted from dried flowers and seeds of the pyrethrum
plant (Chrysanthemum cinerariifolium). Organic formulations have the same mode of action as the
conventional pyrethroid insecticides, functioning as a sodium channel modulator by disrupting the
impulses along the axons of neurons, resulting in paralysis and death of the insect [6]. Pyrethrin has
broad spectrum of activity on many insects, causing a quick knockdown as a contact and stomach
poison, but breaks down rapidly in sunlight. Derivatives from the leaves and seed of the neem tree,
Azadirachta indica A. Juss (Meliaceae), have been used for centuries for medical and pesticidal purposes
and are currently available in various organic formulations of oils, soaps and extracts containing mainly
the compound azadirachtin [7]. Neem-based products have a very broad range of behavioral and
physiological effects on many groups of insect pests, acting as an antifeedant, insect growth regulator
(IGR), repellent, sterilant and inhibitor of oviposition [8–10]. Depending on the formulation and
application method, neem constituents can also be absorbed through plant roots and leaves [11–14],
providing some level of systemic activity on certain insect pests.

Organic farmers clearly have many insecticide products at their disposal; however, managing
insect pests with these products can be a difficult challenge for several reasons. Organic insecticides
are relatively short-lived, many degrade rapidly under environmental conditions, and thus require
frequent applications, precise timing and sufficient knowledge to use them properly. Most products
are more effective on the immature stages of insects; however, because they are used mainly as a
management solution of last resort, timing applications at the most vulnerable insect stages to achieve
maximum control efficacy is often not possible. Additionally, organic insecticides are mainly stomach
and contact poisons with limited systemic toxicity, so thorough spray coverage on plants is essential to
ensure direct exposure to the target pest for effective control. Lastly, organic insecticides are much
more expensive compared to conventional products, so farmers need to know whether investing in
insecticide control will actually result in an economic gain. Regarding this issue, there is a general
lack of control efficacy information for organic farmers to decide which insecticide product works
best for a given target pest. A number of organic pest management guides provide control efficacy
rankings of available organic insecticides against insect pests [15–19]. However, much of the available
information is categorical and based on a limited number of published field trials, technical reports
and personal communications.

Here, we summarize the results of 153 field trials conducted during 2002 to 2015 to evaluate
the control efficacy of commonly used organic insecticides. Trials focused mainly on the organic
products Entrust™ (spinosad, Corteva Agriscience, Indianapolis, IN, USA), Neemix® 4.5 (azadirachtin,
Certis USA, Columbia, MD, USA), PyGanic® (pyrethrins, McLaughlin Gormley King Company,
Minneapolis, MN, USA) and Azera®s (pyrethrins and azadirachtin, McLaughlin Gormley King
Company, Minneapolis, MN, USA), representing the three active ingredient categories described above.
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The comparative efficacy of these insecticides against different insect pests is not well studied. Other
organic insecticides and experimental products were also tested in most trials. We combined the
percent control data across trials to show the overall performance and range of control efficacy of each
insecticide against 12 of the most difficult to control pest groups.

2. Materials and Methods

2.1. General Trial Design

Field evaluations started in 2002 and continued with multiple trials each year until 2015. Most
testing was conducted at the Central Maryland Research and Education Facility, Beltsville, MD, USA,
but some trials were located at the Wye Research and Education Facility, Queenstown, MD, USA, and
Central Maryland Research and Education Facility, Upper Marlboro, MD, USA, where certain pest
populations were present to evaluate treatments. We established trials on non-certified organic land
and applied standard conventional fertility and weed management inputs depending on the specific
requirements of the host crop. Plots were planted either as transplants or direct seeded at normal
planting times (spring and summer crops: May to early June, fall crops: August) either on black plastic
mulch or bare ground seedbeds. We applied irrigation, as needed, using drip tape or overhead systems.
Treatments were arranged in all trials as a randomized block design, replicated four times. Each plot
ranged from a single row 6 m long to three rows 7.5 m long. Row width varied from 0.75 to 1.8 m
according to the planting system and specific crop. No seed or foliar insecticides were applied, except
for the treatments being tested. However, certain crops were planted with fungicide-treated seed.

2.2. Insect Pest/Crop Groups

Multiple trials were conducted each year during 2002 to 2015 on different host crops (Table 1). We
focused on 12 pest groups that are considered difficult to control in organic production, as indicated in
several farmer surveys [20,21] and identified by Caldwell et al. [15] as important pests that lack organic
insecticide efficacy data. For certain pest groups, different host crops were used in trials for a given
year and across years.

2.3. Treatments

We mainly focused on evaluating treatments of Azera, Neemix, PyGanic and Entrust; however, not
all trials tested these insecticides together. Azera (McLaughlin Gormley King Company, Minneapolis,
MN; active ingredients (a.i.) azadirachtin at 1.2% and pyrethrins at 1.4% by volume) was tested as an
experimental formulation during 2002 to 2007; after which, Azera was officially registered in 2008.
Azera was mainly applied at the commonly used rate of 2.34 L/h, but several trials included rates from
1.17 to 4.68 L/h. Neemix 4.5 (Certis USA, Columbia, MD, USA; AI azadirachtin at 4.5% by volume) was
applied at the 1169 mL/h rate in most trials, except a few also tested the lower rate of 585 mL/h. PyGanic
Crop Protection EC 1.4 (McLaughlin Gormley King Company, Minneapolis, MN, USA; AI pyrethrins
at 1.4% by volume) was mainly applied at the rate of 2.34 L/h, although several trials included a range
of rates from 1.17 to 4.68 L/h. Entrust (Corteva Agriscience, Indianapolis, IN, USA; AI spinosad) was
initially tested in earlier trial years as an 80 W formulation (80% a.i. by weight), followed by the liquid
formulation (2SC Naturalyte at 22.5% a.i. by weight) during later years. These formulations were
applied at the standard 71.2 g a.i./h rate for most pest groups, but several trials included rates ranging
from 52.7 to 105.5 g a.i./h.
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Table 1. Insect pest/crop groups evaluated in the study.

Pest Group Predominant Insect Species Host Crops (Cultivar) Number of Trials

Thrips
(Thysanoptera:

Thripidae)

Onion thrips, Thrips tabaci; Onions (Candy, Super Star) 8
Eastern flower thrips, Frankliniella tritici Zinnia (Benaryt’s Giant) 10

Aphids
(Hemiptera: Aphididae)

Green peach aphid, Myzus persicae Collards (Vates), the Cabbage (var.
Blue Thunder) 5

Pea aphid, Acyrthosiphon pisum Alfalfa (Forage Queen) 7
True bugs

(Hemiptera:
Pentatomidae, Coreidae)

Harlequin bug, Murgantia histrionica Collards (Vates) 6
Squash bug, Anasa tristis Zucchini (Payroll) 4

Brown marmorated stink bug, Halyomorpha
halys; Brown stink bug, Euschistus servus

Tomato (Mountain Plus),
Pepper (Intruder) 10

Flea beetles
(Chrysomelidae:

Coleoptera)

Eggplant flea beetle Epitrix fuscula; Tobacco
flea beetle, Epitrix hirtipennis Eggplant (Dusky) 11

Cucumber beetles
(Chrysomelidae:

Coleoptera)

Striped cucumber beetle,
Acalymma vittatum; Spotted cucumber

beetle, Diabrotica undecimpunctata howardi

Cucumber (Dasher 1)
Zucchini (Payroll) 6

Japanese beetle Popillia japonica
(Coleoptera: Scarabaeidae)

Marigold (Diamond Jubilee)
Basil (Aroma 2) 8

Mexican bean beetle Epilachna varivestis
(Coleoptera: Coccinellidae) Snap beans (Provider) 9

Potato leafhoppers Empoasca fabae Harris
(Hemiptera: Cicadellidae)

Potato (Kennebec)
Alfalfa (Forage Queen)
Green beans (Provider)

15

Colorado potato beetle Leptinotarsa decemlineata (Coleoptera:
Chrysomelidae) Potato (Kennebec) 14

Cabbage worms

Imported cabbageworm, Pieris rapae
(Lepidoptera: Pieridae); Diamondback

caterpillar, Plutella xylostella (Lepidoptera:
Plutellidae)

Collards (Vates)
Cabbage (Blue Thunder) 15

Alfalfa weevil Hypera postica
(Coleoptera: Curculionidae) Alfalfa (Repel ll) 10

Fruitworms

Tomato fruitworm, Helicoverpa zea;
yellow-striped armyworm, Spodoptera

ornithogalli; variegated cutworm, Peridroma
saucia

Tomato (Mountain Plus) 9

Corn earworm, Helicoverpa zea Sweet corn (Prime Plus) 6

We also evaluated mixtures of the insecticides with various additives and other organic and
experimental products. Those products evaluated for control of specific pest groups included: Gemstar®

(Certis USA, Columbia, MD, USA; 0.64% polyhedral occlusion bodies of the nuclear polyhedrosis
virus of Helicoverpa zea), Bacillus thuringiensis (Bt) foliar products (Deliver®, Agree® WG, and Javelin®

WG, Certis USA, Columbia, MD, USA), Aza-Direct® (Gowan, Yuma, AZ, USA; 1.2% azadirachtin),
Venerate™ (Marrone Bio Innovations, Davis, CA, USA; 94.46% heat-killed Burkholderia spp. strain
A396), PFR 97® (Certis USA, Columbia, MD, USA; 20% Isaria fumosorosea Apopka Strain 97), Trilogy®

(Certis USA, Columbia, MD, USA; 70% extracts of neem oil), M-Pede® (Gowan, Yuma, AZ, USA; 49%
potassium salts of fatty acids), Des-X® (Certis USA, Columbia, MD, USA; 47% potassium salts of
fatty acids), Ecotec® (Brandt Consolidated, Inc., Springfield, IL, USA; contains several essential oils),
Ultra-Pure® Oil (BASF, Research Triangle Park, NC, USA; 98% mineral oil), Surround® WP (Engelhard
Corporation, Iselin, NJ, USA; 95% kaolin clay), and adjuvants Nu-Film® P (Miller Chemical, Hanover,
PA, USA), BioLink® Spreader-Sticker (Westbridge, Vista, CA, USA) and Oroboost® (Oro Agri, Fresno,
CA, USA).

We applied all insecticides as foliar treatments using a CO2 backpack sprayer with different boom
arrangements and nozzle types depending on the plot width and canopy structure of the crop. We
used a 3 m boom with six flat fan nozzles in trials with multiple row plots, or a 0.9 m boom with
three hollow cone nozzles covering a single row plot, with one nozzle dropped on each side of the
crop canopy and one over the top. The depth of the drop nozzles on each side varied depending
on the height of the crop canopy. The backpack sprayer was calibrated to deliver 188 to 357 L/h of
diluted insecticide spray depending on the boom size and crop canopy. In most trials, we first applied
treatments when the density of the target pest population was determined high enough to cause
economic damage. Different criteria for making this determination depended on the pest/crop group.
Each treatment was repeated on a weekly schedule for a variable number of applications to allow for a
relative evaluation of control efficacy among different insecticides (more details are given in the Results
and Discussion Section).
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2.4. Insect Sampling

In all trials, we made general observations prior to the first application to assess the relative
infestation level of the target pest. Following each application, we sampled plots at least twice, usually
at 2 and 6 days post-treatment, in order to assess the level of pest density. Sampling focused on the
major insect pest; however, we recorded other minor pests and beneficial arthropods in many trials.
Different sampling methods and sample sizes were used depending on the pest/crop group to measure
changes in insect densities after each treatment. For cabbageworms, Mexican bean beetle, cucumber
beetles, flea beetles, Japanese beetles, Colorado potato beetle, Harlequin bugs, squash bugs and green
peach aphid, we visually examined 6 to 12 consecutive plants from the center of each plot and recorded
the number of insects per plant. Pea aphid and alfalfa weevil densities were estimated by taking 10
sweeps per plot using a standard 38 cm sweep net. Depending on the host crop, either sweep net or
vacuum sampling over a portion of each plot assessed the density of adult potato leafhoppers, while
samples of 10 excised leaves per plot were examined to estimate numbers of leafhopper nymphs. For
stinkbugs on tomato and pepper, we harvested mature fruit weekly from each plot and recorded the
number of damaged fruits. Onion thrips density was determined by counting the number of adults
and immatures per onion plant, whereas the number of flower thrips on zinnia plants were extracted
and recorded from samples of 10 to 20 flower heads per plot using Berlese funnels. In many trials, we
also collected data on the marketable yield per plot, percentage of defoliation over the entire plot and
percentage of damaged plants.

2.5. Data Analysis

We analyzed data from each trial as a randomized block analysis of variance (ANOVA) using
SAS Proc Mixed [22] to test for insecticide effects on the target pest population. The model included
insecticide treatment, sampling date and the interaction as fixed factors, replicate block as a random
effect and sampling date as a repeated measure. Before analysis, we tested the raw data for normality
and homogenous variance using the Shapiro–Wilk W test, Spearman’s rank correlation and by
examining residual scatter plots. We performed data transformations prior to analysis, and partitioned
the variance if necessary. The interaction effect was not significant in most trials. However, when it
was significant, differences among treatments changed in magnitude but remained relatively ranked
in the same order across sampling dates. In both cases, we averaged the post-treatment data on
insect density over all sampling dates of each trial and calculated the mean percent control for each
insecticide, using Abbott’s formula [(control density-treatment density)/control density ×100]. We then
pooled the percent control means of all trials for each pest/crop group to represent the overall control
efficacy of the insecticide. This pooled dataset only included data from trials with consistent pest
densities high enough to rigorously test for treatment effects. The pooled results for each insecticide
were visualized with box-whisker plots to display the percent control data of individual trials, the 25%
and 75% percentile range of the trial data and the overall mean control efficacy. We calculated the 95%
confidence limits (95% CL) around the mean using a Student’s t distribution to indicate significant
differences in overall control efficacy among insecticides tested for each pest/crop group.

3. Results and Discussion

3.1. Thrips

Thrips are major pests causing direct and indirect damage to many field and greenhouse-grown
crops worldwide [23]. In organic production, they are particularly challenging to manage due to their
high generation turnover, low aesthetic injury threshold tolerated on many crops and their ability
to transmit several plant pathogens [24,25]. We evaluated organic insecticides in eight and ten trials
during different years on onion and zinnia (grown for cut flowers), respectively. Because both crops
were greenhouse-grown and then transplanted in early spring, plants became quickly infested during
early May, primarily due to immigrating thrips from nearby senescing small grain fields. On onions,
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infestations consisted primarily of onion thrips, reaching mean densities of adult and larval stages
ranging from 11.5 to 56.5 per plant in untreated plots. Infestations in most trials caused significant
injury characterized by silvery patches or streaks on the leaves. On zinnia, Eastern flower thrips along
with several other flower species infested the flower heads. Populations in untreated plots ranged
from 2.3 to 62.5 thrips per head and caused discoloration of the flower petals and the failure of some
buds to open. Depending on the trial, two or three weekly treatments of each insecticide were applied
per trial, starting at the first sign of thrips activity.

Results of thrips control are summarized in Figure 1 by crop because insecticide treatments
performed differently due to the species complex and variable levels of insecticide exposure. Overall,
control efficacy of all treatments was slightly better but more variable against flower thrips (42.1%)
compared to control of onion thrips (32.0%). However, relative differences among insecticides were
similar for both crops. Entrust at the standard rate reduced thrips’ densities by an overall 65.6% in both
crops, which was significantly higher than the other treatments based on non-overlapping 95% CL. In
some trials, treatments with Entrust plus Oroboost (2% v/v) or M-pede (1% v/v) consistently improved
control by another 10% to 15%. Azera, Neemix and PyGanic averaged 29.3%, 19.1% and 20.7% over all
trials, respectively. Doubling the standard rates of Azera and PyGanic or adding adjuvants Nu-Film
P or BioLink showed some enhanced efficacy but levels of control were still considerably lower
than Entrust.

Figure 1. Percent control of onion and flower thrips with weekly applications of Azera, Neemix,
PyGanic and Entrust relative to the untreated control. Mean data for each insecticide are given for 8
and 10 trials on onion and zinnia, respectively. Box-whisker plots show the 25% and 75% percentile
range of percent control data and the horizontal line in each box is the overall mean control efficacy.
Number above each plot indicates the average number of weekly applications. Application rates of
Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g a.i./h respectively,
except for trial data in red indicating a higher rate. Entrust provided significantly higher control of
onion thrips compared to the other insecticides. There were no significant differences among treatments
for flower thrips.

We measured onion yield in four trials but only one showed a significant yield increase in the
Entrust plots. Moreover, there was no significant relationship in any trial between thrips numbers
and yield; thus, the level of control was apparently not high enough for treatments to show a yield
response or the onion plants compensated for the injury. Variation in control among trials, particularly
for Azera, Neemix and PyGanic, was noticeably greater for flower thrips. In several trials, densities in
treated plots averaged higher than levels in untreated plots. The variable results were most likely due
to differences in species composition, ratio of adults to larvae and disproportionate levels of insecticide
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coverage on flower heads. Several studies reported that the direct contact and systemic activity of
neem-based formulations resulted in high mortality of early larvae but had no effect on older larvae
and adult thrips [26,27]. In conventional production of cut flowers, multiple insecticide applications
are often needed to manage thrips because they feed in tight, protective places within the expanding
flower structure [28]. No signs of phytotoxicity were evident with any of the treatments.

Our results agree with other studies reporting 42% to 62% control of onion and flower thrips with
Entrust, and generally ineffective control (<30%) with products containing pyrethrin, azadirachtin or
combinations of both [29–39].

3.2. Aphids

Aphids are common pests of most major families of organic crops [40]. Their piercing-sucking
feeding removes plant sap, causing yellowing and curling leaves, stunted growth and deformed fruits.
As they feed, aphids exude sticky honeydew on leaves, which encourages the growth of sooty mold.
Certain species also transmit plant virus diseases that reduce the marketable quality of the crop or
can actually kill plants. We conducted 12 trials to evaluate the control efficacy of Azera, Neemix and
PyGanic against aphid infestations on several host crops.

Figure 2 summarizes the results separately for trials infested predominantly with green peach
aphid (GPA) and pea aphid (PA). For GPA, we evaluated each insecticide in five trials of mixed plantings
of cabbage and collards. Cabbage aphids (Brevicoryne brassicae) were also present in several trials but
densities were not high enough to discern treatment effects. GPA infestations averaged 23.3 per plant
and ranged up to 58 per plant in untreated plots. Each insecticide was applied weekly either two or
three times depending on the trial. Overall, control efficacy averaged 78.3%, 52.6% and 75.1% for Azera,
Neemix and PyGanic respectively, but overlapping 95% CL indicated no significant differences. Three
trials in 2006 showed a small but consistent increase in control efficacy with treatments of PyGanic
applied with different adjuvants (Nu-Film P, BioLink). A weekly treatment schedule of Entrust at the
standard rate was also tested against GPA in two collard trials and gave <40% control.

Figure 2. Percent control of green peach aphid and pea aphid with weekly applications of Azera,
Neemix and PyGanic relative to the untreated control. Mean data for each insecticide are given
for five and seven trials on cole crops and alfalfa, respectively. Box-whisker plots show the 25%
and 75% percentile range of percent control data and the horizontal line in each box is the overall
mean control efficacy. Number above each plot indicates the average number of weekly applications.
Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g
a.i./h respectively, except for individual trial data in blue and red indicating lower and higher rates,
respectively. There were no significant differences among treatments for each aphid.
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For PA, we applied a single application of each insecticide in seven alfalfa trials. Untreated
infestations ranged from 3.5 to 11.5 aphids per sweep, which was below the reported economic
threshold of 30 aphids per sweep [41]; however, densities were consistently high enough to test for
treatment effects. Overall, percent control averaged 19.4%, 16.0% and 20.3% for Azera, Neemix and
PyGanic, respectively. Together, these insecticides provided significantly less control of PA compared to
GPA control, and the range of control among trials was greater, except for Neemix. None of the organic
treatments were significantly different from the untreated control, and higher rates of Azera showed
no consistent pattern of control enhancement compared to the standard rate. Moreover, treatments of
Azera mixed with the adjuvant Oroboost (4% v/v) showed only a small improvement in PA control
compared to Azera applied alone. In contrast to the GPA trials, the lower PA control was most likely
due to having only a single application per trial. Azadirachtin works primarily as a feeding inhibitor
and IGR against aphids [42,43], thus, evaluations of Azera and Neemix control at 2–3 days after a single
application may be too early to reveal the cumulative effects on immature aphids. Furthermore, PA
populations have developed resistance to a number of conventional insecticides, including pyrethroids,
which may partially explain the low control efficacy of PyGanic and Azera.

We evaluated other organic products and treatment combinations for aphid control in several
trials. A greenhouse trial in 2008 tested several soap and oil products against a heavy infestation of
GPA on pansy bedding plants. Compared to the control, Ultra-Pure oil at 2% v/v, M-Pede at 2% v/v,
Trilogy at 2% v/v and Oroboost at 4% v/v provided 62.5%, 42%, 34% and 28% control, respectively.
No signs of phytotoxicity were evident with any of these treatments. Oroboost at 4% v/v and Ecotec
at 1.17 L/h, when each were applied alone in two alfalfa trials, provided no control of PA. In a 2015
soybean trial, two weekly applications of Des-X at 2% v/v reduced a high infestation of soybean aphid
(Aphis glycines) by 47%, but control was significantly less than the PyGanic treatment.

Findings of other researchers show a similar range of control efficacy for azadirachtin and pyrethrin
products against GPA, flower aphids and other related species. Reported levels of aphid control range
from 64% to 92% with Azera [44–46], 19% to 47% control with Neemix [47–50] and 47% to 73% with
PyGanic [44,51,52]. Although Entrust provided ineffective GPA control in our trials, several studies
show moderate levels of control efficacy ranging from 41% to 64% against several aphid species [53,54].
Field trials testing the control efficacy of pyrethrin combined with azadirachtin against PA generally
showed some suppression (<30%) but not enough to provide effective control [55,56]. Our results on
PA are consistent with these findings.

3.3. True Bugs

True bugs are at the top of the list of difficult pests to control in organic production. Their
piercing-sucking feeding causes wilting and stunting of plants, premature abortion of fruiting bodies,
damaged fruit and unmarketable leafy produce of many horticultural crops [57–61]. Eleven trials were
conducted on the following true bugs: harlequin bug (HB) on collards (6 trials), squash bug (SB) on
zucchini (4 trials) and stinkbugs (STB) on tomato and bell pepper (7 trials). Two or three applications
were applied in most trials, except for those evaluating STB, which required 5 to 6 weekly applications
to cover the fruiting period of tomato and pepper. Infestations per plant in untreated plots ranged
from 0.5 to 7.1 HB and 2.1 to 37.2 SB. We did not directly sample stinkbug populations but instead
measured treatment effects by the percentage of fruit showing feeding injury, which ranged from 9.4%
to 92.7% of the marketable crop in untreated plots.

Results in Figure 3 are summarized separately for each true bug, which are known to exhibit
differences in insecticide susceptibility among species [62]. Differences among insecticide treatments
were relatively the same for HB and SB, although the overall level of control was 20% lower for the
latter bug. Overall, Azera, Neemix and PyGanic reduced HB densities by 62.1%, 38.3% and 71.0%, and
SB densities by 49.2%, 33.7% and 52.2%, respectively. However, percent control among treatments was
not statistically different based on overlapping 95% CL, except for PyGanic, which gave significantly
higher control of HB compared to the other insecticides. These results are somewhat consistent with
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other field studies that showed a wide range of control efficacy with organic insecticides against true
bugs. One study [63] reported no effective control of HB with Neemix and PyGanic but Entrust at the
higher rate reduced nymphs by 72% and adults by 58% on collards and turnips. Leaf dip bioassays
also showed toxicity levels of spinosad higher than levels for pyrethrins and azadirachtin [64,65].
Another trial reported only 17% and 30% control of HB with Entrust and Neemix, respectively [66].
For SB, results of the few published trials show some control of nymphal densities with pyrethrin
and azadirachtin formulations but insufficient control of adults under high population pressure [60].
However, Seaman et al. [67] reported 74% control of SB with Azera but at the highest labeled rate.

Figure 3. Individual trial results of organic insecticide control of true bugs. Azera, Neemix and PyGanic
were evaluated for control of harlequin bug and squash bug, while Azera, PyGanic and Entrust were
evaluated against stinkbugs. Mean percent control data for each insecticide are given for six trials with
harlequin bug on collards, four trials with squash bug on zucchini and seven trials with stinkbugs
on tomato and pepper. Box-whisker plots show the 25% and 75% percentile range of percent control
data and the horizontal line in each box is the overall mean control efficacy. Number above each plot
indicates the average number of weekly applications. Application rates of Azera, Neemix, PyGanic
and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g a.i./h respectively, except for individual trial
data in blue and red indicating lower and higher rates, respectively. Insecticide treatments for each true
bug were not significantly different, except for PyGanic, which provided significantly better control of
harlequin bugs than the other insecticides.

Overall, reductions in STB-damaged fruit resulting from Azera, PyGanic and Entrust treatments
averaged 35.6%, 9.3% and 32.8%, respectively (Figure 3). Higher rates of Azera and Entrust generally
provided additional control but still less than 60% protection from fruit injury. Even with five weekly
applications of each insecticide, control was consistently ineffective, because the majority of fruit injury
was caused by more tolerant adults. Compared to other true bugs, these results indicate that adult STB
are less susceptible to Azera and PyGanic, since we applied nearly twice the number of applications.

To further evaluate control efficacy against brown marmorated stinkbug nymphs, we manually
infested plots in a 2013 pepper trial with 18 nymphs (75% 2nd–3rd, 25% 4th–5th instars) per plant,
starting when crown fruit reached marketable size. After five days to allow nymphs to acclimate,
we applied two treatments three days apart of each insecticide alone and in combination with other
products. Treatments that significantly reduced nymphal densities included Azera at 2.34 L/h (79.2%),
PyGanic at 4.68 L/h (73.3%) and Entrust at 71.2 g a.i./h (84.5%). Treatments that were less effective
included M-Pede 2% v/v (46.8%) and PFR 97 at 1.68 kg/h (22.7%). We also did not observe any
significant gain in nymphal control with Entrust or Azera in combination with M-Pede.
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Other studies have reported variable control efficacy of STB with organic insecticides, which are
consistent with our findings on Azera, PyGanic and Entrust. Laboratory bioassays have shown that
pyrethrin, pyrethrin combined with azadirachtin, spinosad, azadirachtin, and insecticidal soaps have
activity against STB [68–70]. However, field studies are not always consistent with laboratory results.
Several studies found no significant reduction in STB densities with these same active ingredients
compared to the control [53,59,71], generally reporting <35% control. Only three field studies reported
effective control of STB with organic insecticides: 70% control with Azera on soybean [59], 84% control
with Entrust on snap bean [45] and 82% control with Neemix on cowpea [72]. Taken together, the wide
range of true bug control is likely due to differences in the ratio of adult and nymphs, population
density, number of applications and residue coverage influenced by the spray volume and canopy
structure of the specific crop. Overall, our findings, along with other published reports, confirm that
adult true bugs are difficult to control with organic insecticides; however, there is still the opportunity
to effectively control nymphs if applications are timed properly.

3.4. Flea Beetles

Flea beetles are common pests of many cruciferous and solanaceous crops. They are difficult
to control with organic insecticides because they feed on more protected parts of the plants and can
quickly recolonize fields after treatment [73]. Feeding injury results in numerous small holes in the
leaves of seedlings and transplants, causing stunting or even plant death, and reduced marketable
yield of leafy produce [74]. We evaluated flea beetle control during the early seedling stages in 11
eggplant trials. Several species of flea beetles (mainly eggplant and tobacco in order of abundance)
invaded plots shortly after transplanting in each trial, after which insecticide treatments were applied
either 2 or 3 times on a weekly basis. Overall infestations in untreated plots averaged 6.2 flea beetles
per plant with levels ranging up to 21 beetles per plant.

The standard rates of Azera, PyGanic and Entrust significantly reduced flea beetle populations by
an overall 73.6%, 76.6% and 77.4%, respectively (Figure 4). Although results suggest a rate response
for Azera, individual pairings of different rates within trials showed only slight increases in control
with higher rates of Azera. Likewise, treatments of PyGanic mixed with adjuvants (Nu-Film P,
BioLink) provided no significant increase in control compared to PyGanic applied alone. Neemix was
significantly less effective, averaging 31.9% reduction in flea beetle numbers. Azadirachtin apparently
had some repellent or antifeedant activity against colonizing flea beetles but expectedly, did not have
any IGR effect on adults. For this reason, pyrethrin in PyGanic and Azera was probably the main cause
of flea beetle mortality. We also evaluated Surround WP as a physical barrier and direct irritant applied
in combination with 1% v/v Trilogy in several trials and significantly reduced flea beetle numbers by
75%. However, the addition of Surround with Azera provided little additional control compared to
Azera applied alone. We found no significant differences in plant height and yield among treatments,
but plants in control plots were generally smaller and produced fewer fruit. This effect may be related
to the moisture stress caused by feeding injury during early seedling growth.
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Figure 4. Percent control of flea beetles with weekly applications of Azera, Neemix, PyGanic and
Entrust relative to the untreated control. Mean data are given for 11 trials on eggplant. Box-whisker
plots show the 25% and 75% percentile range of percent control data and the horizontal line in each box
is the overall mean control efficacy. Number above each plot indicates the average number of weekly
applications. Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34
L/h and 71.2 g a.i./h respectively, except for individual trial data in blue and red indicating lower and
higher rates, respectively. Neemix provided significantly lower control than the other insecticides.

Our findings align closely with other field studies testing organic materials against different species
of flea beetles. Taken together, most studies show consistently high levels of flea beetle suppression
with Entrust and PyGanic, but limited efficacy with azadirachtin products [64,75–79].

3.5. Cucumber Beetles

Cucumber beetles colonize fields shortly after seedlings emerge or are transplanted and feed
on the cotyledons and young leaves, which either kills plants or greatly retards their growth [80].
More importantly, overwintered beetles carry the causal agent of bacteria wilt, Erwinia tracheiphila,
which is transmitted to susceptible cucurbits as beetles feed on young plants. These beetles are
particularly difficult to manage with short-residual organic insecticides because they quickly re-invade
after treatment and are often sheltered from insecticide sprays during the day in soil cracks or under
the straw or plastic mulch.

We evaluated organic insecticides in four cucumber trials and two zucchini trials that were
direct-seeded in fields that had a history of cucumber beetle activity the previous year. Trials received
two or three weekly applications, starting a few days after plant emergence when beetles were active.
In all trials, moderate to high populations of striped cucumber beetles caused significant leaf and
cotyledon injury, with several trials showing bacterial wilt symptoms during later plant growth.
Infestation densities in untreated plots ranged from 1.6 to 3.1 beetles per seedling. Pooled over trials,
the overall reduction of beetles relative to the control averaged 48.7% for Azera, 46.1% for Neemix,
39.4% for PyGanic and 56.2% for Entrust (Figure 5). All treatments prevented plant stand losses due to
direct feeding injury but did not provide enough control of adults in most trials to prevent spread
of bacterial wilt. Because beetles quickly re-colonized treated plants, multiple insecticide treatments
applied at shorter intervals may be necessary for effective control and prevention of bacterial wilt.
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Figure 5. Percent control of cucumber beetles with weekly applications of Azera, Neemix, PyGanic
and Entrust relative to the untreated control. Mean data are given in four cucumber trials and two
zucchini trials. Box-whisker plots show the 25% and 75% percentile range of percent control data and
the horizontal line in each box is the overall mean control efficacy. Number above each plot indicates
the average number of weekly applications. Application rates of Azera, Neemix, PyGanic and Entrust
were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g a.i./h respectively, except for trial data in red indicating a
higher rate. There were no significant differences among treatments.

Laboratory bioassays have documented that permethrin can cause high mortality of striped
cucumber beetles and extracts of neem have antifeedant effects on adults [81,82]. However, our findings
and those of other field trials consistently show only low to moderate levels of control (<50%) with
organic insecticides [19,67,76,83–85]. Given the effectiveness of current insecticides available to organic
farmers, it is very difficult to prevent the feeding injury and spread of bacterial wilt by these insects.

3.6. Japanese Beetles

Japanese beetles (JB) cause defoliation injury to over 300 plant species and can significantly
reduce the marketable quality or aesthetic value of many horticultural crops [86]. We evaluated the
effectiveness of single applications of Azera, Neemix and PyGanic on two susceptible specialty crops
(5 trials on basil, 3 trials on marigold flowers). Since other studies have shown inconsistent control
of JB from direct contact toxicity, we focused on the residual activity of the insecticides as a repellent
and feeding deterrent. In all trials, JB were active throughout the treatment period, reaching densities
ranging from 2 to 8 beetles per plant and causing >20% bloom or foliage injury on untreated plants.

Trial results of percent control at two and four days post-treatment in Figure 6 indicate the residual
activity of the treatments. Azera, Neemix and PyGanic reduced JB densities at two days post-treatment
by an average 85.2%, 77.5% and 62.1%, respectively. At four days post-treatment, control efficacy of
Azera and Neemix dropped by an overall 29% but still significantly reduced the number of JB per plant
by 57.1% compared to untreated controls in most trials. The residual activity of PyGanic dropped even
more at four days, averaging 30.1% control. Azera treatments were consistently more effective and
showed longer residual activity at the higher rates, providing >90% control at two days and 71% to
88% at four days. Because control performances of Azera and Neemix were not significantly different,
and PyGanic was considerably less effective, the repellency and antifeedant effects of azadirachtin
accounted for most of the control efficacy. Doubling the rates of PyGanic or adding adjuvants (Nu-Film
P, BioLink) consistently increased the level of control compared to a standard rate of PyGanic applied
alone. Two trials on marigold plants also tested Entrust and showed an average 50.2% control of JB
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when applied alone or 77.5% when mixed with 1% M-Pede after five days post-treatment. None of the
treatments caused phytotoxic symptoms.

Figure 6. Percent control of Japanese beetles with a single application of Azera, Neemix and PyGanic
relative to the untreated control. Mean data at two and four days post-treatment are given for five
trials on basil and three trials on marigold flowers. Box-whisker plots show the 25% and 75% percentile
range of percent control data and the horizontal line in each box is the overall mean control efficacy.
Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L.h−1 and
71.2 g a.i./h respectively, except for trial data in red indicating a higher rate. There were no significant
differences among treatments.

Other studies have reported evidence of residual repellency and feeding deterrent activity on JB
with foliar applications of azadirachtin [87–90]. Vitullo and Sadof [91] tested foliar and soil applications
of azadirachtin for control of JB on roses. They reported a 55% reduction in rose bloom injury with
weekly applications of azadirachtin but the level of bloom protection was still unacceptable. Soil
applications of neem extracts have also shown variable results for control of JB grubs [81,92–94] but
generally not enough suppression of adult emergence to prevent plant injury. Although the cut flower
trials show some evidence of Entrust efficacy, other studies on raspberries have reported poor control
with spinosad [95,96]. Our results indicate that azadirachtin in Azera and Neemix can suppress JB
activity but only for a relatively short period; thus, it may require multiple treatments under high
population levels to protect susceptible organic crops from these highly mobile adults.

3.7. Mexican Bean Beetle

The Mexican bean beetle (MBB) ranked ninth in importance out of 29 problem insects identified by
organic farmers [97]. Overwintered adults begin feeding on the earliest planting of snap beans soon after
seedlings emerge, and then populations increase through multiple generations on successive plantings,
resulting in the highest infestations in late plantings [98,99]. Both larvae and adults feed on the
underside of leaves, causing reduced photosynthetic activity and desiccation of the plant. Infestations
during pod development can reduce yield if the amount of defoliation exceeds 20% [100,101].

We conducted nine trials in different years on late plantings of snap beans. To attract a high
infestation, we established an earlier untreated plot at each trial location to serve as a nursery for MBB
population buildup. In all trials, adult beetles invaded plots during the early vegetative stages and
larval infestations reached damaging levels prior to bloom. Percent defoliation in untreated plots
ranged from 28% to 73%, and late larval densities ranged from 5 to 17 per plant. Each treatment was
applied weekly either 4 or 5 times depending on the trial, starting as soon as the first egg masses hatched.
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Figure 7 shows separate trial results for reductions in defoliation and late larvae (3rd and 4th
instars) relative to the untreated control plots. Averaged over trials, treatments of Azera and Neemix
significantly suppressed densities of late larvae by 79.6% and 81.7% respectively, and both insecticides
reduced the level of defoliation by 90%. However, reductions in larval densities did not occur until after
two applications of each insecticide, but eventually, the overall cumulative effects resulted in 80% to
90% fewer larvae reaching pupation in most trials. The IGR activity of azadirachtin in both insecticides
had a major effect on larval development and reduced feeding due to secondary physiological effects.
Several trials showed no consistent gain in control efficacy with higher rates of Azera. In contrast,
Azera applied at the lower rate of 1.17 L/h and Neemix at the lower rate of 585 mL/h provided the same
level of control as the standard rates. These results suggest that the cumulative effect of the IGR activity
was not dependent on the application rate. Bean yields in five trials showed significant increases of
20% to 38% in the Azera and Neemix treatments compared to yields in the untreated control.

Figure 7. Percent control of Mexican bean beetles with weekly applications of Azera, Neemix, PyGanic
and Entrust relative to the untreated control. Mean data are given for percent defoliation and late
larvae (3rd and 4th instars) for nine trials on snap beans. Box-whisker plots show the 25% and
75% percentile range of percent control data and the horizontal line in each box is the overall mean
control efficacy. Number below each plot indicates the average number of weekly applications.
Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g
a.i./h respectively, except for individual trial data in blue and red indicating lower and higher rates,
respectively. There were no significant differences in defoliation among treatments. Azera and Neemix
provided significantly higher control of late larvae compared to the other insecticides.

The knockdown and direct toxicity effects of PyGanic resulted in significantly less control against
larvae (52.2%) but still reduced defoliation by an overall average of 73.5%. In several trials, treatments
of PyGanic with different adjuvants (Nu-Film P, BioLink) showed a slight gain in control but not
significantly different from PyGanic alone. Entrust was tested in only four trials and showed similar
but more variable levels of control efficacy (53.4%). We also pooled data on adults recorded in seven
trials, which showed mean control efficacy ranging from 12% to 83% for Azera, 10% to 82% for Neemix
and 10% to 68% for PyGanic. Effects on adults were more variable due to inter-plot movement during
the treatment period of each trial. Other tested organic products included Surround WP applied in
combination with 1% v/v Trilogy, which reduced late larvae densities by 24.8% and defoliation by
39.3%. Similarly, combining Surround with Azera provided very little additional control compared
to Azera alone. Aza-Direct, another azadirachtin product, applied at 2.34 L/h, reduced levels of late
larvae and defoliation that were similar to those provided by Neemix.
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There is considerable research published on controlling MBB with conventional insecticides and
nonchemical approaches [100]; however, few studies have reported on the control efficacy of organic
insecticides tested in these trials. Seaman [16] lists 27 organic insecticides labeled for MBB control but
indicated that only eight products containing azadirachtin alone or in combination with permethrin
were considered effective. One study by Nottingham and Kuhar [101] reported 57% control with the
high rate of Azera, 39% control with PyGanic and 49% control with Entrust, when each insecticide was
applied twice weekly.

3.8. Potato Leafhopper

Potato leafhopper (PLH) is major pest of potatoes and legumes, such as snap beans, dry beans
and alfalfa, but also infests other horticultural and field crops [102]. Nymphs and adults feed by
piercing and sucking plant tissues, causing a blockage of the plant vascular tissue, which increases
plant respiration and reduces photosynthesis. Injury symptoms include yellowing and curling of leaf
margins, leading to eventual leaf necrosis (hopperburn). PLH is difficult to manage with nonchemical
approaches in organic production due to its wide host range, high dispersal behavior and few effective
natural enemies.

We evaluated Azera, Neemix and PyGanic for PLH control in four trials of snap beans, five trials
of alfalfa and six trials of potato. Treatments were applied weekly for an average of 1.6, 2.7 and 2.5
applications on alfalfa, potato and green beans, respectively. Since Entrust is not labeled for PLH and
previous trials have indicated poor control, we tested the standard rate in only three trials. Treatments
commenced when adults began to invade plots or when adult densities exceeded one per sweep,
depending on the crop. PLH infestations reached moderate to high levels in most trials, causing
noticeable yellowing and leaf curl injury by the end of the treatment period. Average densities in
untreated plots ranged from 1.1 to 6.2 adults per sweep or 1.3 to 6.4 nymphs per leaf, depending on
the trial.

Trial results for adults and nymphs are given separately in Figure 8. Overall, control by Azera,
Neemix and PyGanic averaged 80.5%, 25.3% and 68.1% for adults, and 85.0%, 44.0% and 79.5% for
nymphs, respectively. Trials testing different rates of Azera showed a consistent rate response, with
higher rates up to 4.68 L.h−1 averaging 87.6% control compared to 76.9% control at the standard 2.34
L/h rate. The addition of the adjuvant Oroboost with Azera resulted in no improvement in control. In
several trials, PyGanic with different adjuvants (Nu-Film P, BioLink) also showed only slight gains in
control and not significantly different from PyGanic alone. Control efficacy of Azera and PyGanic was
mainly due to the knockdown and direct mortality effects of pyrethrin on adults and nymphs, while
the repellency and antifeedant effects of Neemix provided poor control of adults and only moderate
but highly variable efficacy against nymphs. Neemix performed better in trials with earlier infestations
of developing nymphs that allowed more time for the IGR effect to work during the treatment period.
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Figure 8. Percent control of potato leafhopper with weekly applications of Azera, Neemix and PyGanic
relative to the untreated control. Mean data are given for adults and nymphs compiled from 4 trials on
snap beans, 5 trials on alfalfa and 6 trials on potato. Box-whisker plots show the 25% and 75% percentile
range of percent control data and the horizontal line in each box is the overall mean control efficacy.
Number below each adult plot indicates the average number of weekly applications. Application rates
of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g a.i./h respectively,
except for individual trial data in blue and red indicating lower and higher rates, respectively. Azera
and PyGanic provided significantly higher control of adults compared to Neemix, but there were no
significant differences in nymph control among treatments.

Of the three trials testing Entrust, control was consistently less than 10%; however, control efficacy
increased to 75.2% when Entrust was applied in combination with 1% v/v M-Pede in one trial. PyGanic
formulations alone or in combination with Neemix (equivalent to Azera) have provided satisfactory
control of adults and nymphs in other trials, while Neemix alone has been ineffective [15,103,104].

Other types of organic products evaluated for PLH control were only moderately effective. In
several trials, M-Pede at 2% v/v, Oroboost at 4% v/v, Ecotec at 1.17 L/h and Des-X at 2% v/v applied
alone reduced PLH numbers by 18.1%, 32.4%, 30.8% and 38.6%, respectively. These findings are in
general agreement with published results on leafhopper control but provide a quantitative assessment
of the range in control efficacy of these insecticides.

3.9. Colorado Potato Beetle

Colorado potato beetle (CPB) can cause complete loss of a potato crop if not controlled and
inflicts economic damage to eggplant when infestations are high. Control is very challenging, even
for conventional farmers, owing to the insect’s ability to develop resistance to insecticides. Seaman
et al. [17] recommend nine management options for organic control of CPB, including some dire
measures, such as flaming, vacuum collecting and trench trapping. If these management options fail,
spinosad and azadirachtin products have proven to be effective rescue treatments in most situations.

We conducted 14 potato trials to evaluate different organic insecticides and treatment combinations
against CPB. Treatments were initiated when the first-generation population exceeded 40 small larvae
per 10 plant hills, and either 2 or 3 weekly applications of each insecticide were applied depending on
the trial. Populations of CPB were consistently high in all trials, causing 36.6% to 73.3% defoliation
and up to 53% tuber yield loss in untreated plots. Although all stages were sampled, densities of
adults, egg masses and early instars (1st and 2nd instars) were highly variable and did not show any
significant treatment effect in most trials. Older larvae (3rd and 4th instars) caused the majority of
feeding injury, and thus reductions in their density and resulting defoliation provided better indicators



Insects 2020, 11, 614 17 of 31

of the control effectiveness of each insecticide. Numbers of older larvae in untreated plots ranged up
to 22.2 per plant hill.

Figure 9 shows the individual trial results of each insecticide expressed as the percent reduction
in larval densities relative to the untreated control. The direct toxicity effects of Entrust at the 71.2 g
a.i./h rate provided the most effective and consistent control, significantly reducing larval densities and
defoliation by greater than 95%. Additionally, we tested a range of Entrust application rates in several
trials and found that lower rates from 14.3 to 29.3 g a.i./h also provided good control, ranging from
70% to 88% reduction of older larvae. These findings suggest that one or two weekly applications of
Entrust at reduced label rates may provide effective control of CPB.

Figure 9. Percent control of Colorado potato beetle with weekly applications of Azera, Neemix, PyGanic
and Entrust relative to the untreated control. Mean data are given for larvae (3rd and 4th instars)
compiled from 14 trials on potato. Box-whisker plots show the 25% and 75% percentile range of percent
control data and the horizontal line in each box is the overall mean control efficacy. Number above each
plot indicates the average number of weekly applications. Application rates of Azera, Neemix, PyGanic
and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g a.i./h respectively, except for individual
trial data in blue and red indicating lower and higher rates, respectively. Azera, Neemix and Entrust
provided significantly higher control of adults compared to PyGanic.

In comparison, Azera (71.4% control) and Neemix (63.3% control) were less effective but still gave
relatively good control of late larvae at the standard rate. The feeding deterrent and IGR effects of
azadirachtin had a greater impact on larval development than was evident by the observed reductions
in larval numbers, because both insecticides reduced defoliation by about 86%. Such reduction in
leaf damage would be acceptable economic control in organic potato production because plants can
normally withstand up to 30% defoliation without yield loss. Neem extract products inhibited feeding
of adult and larval CPB in laboratory studies [105–107] but are generally slower to bring about control
in the field. Compared to our results, other field studies reported similar control effectiveness with
Entrust (>95% control) and Azera (68% to 77% control) [103,108–111]. Nault and Seaman [108] also
found no significant difference in control between low and high application rates of Entrust.

PyGanic was the least effective treatment and more variable across trials, reducing larval densities
and defoliation by only 14.7% and 34.3%, respectively. CPB is known to exhibit resistance to pyrethroid
insecticides [112], which is probably attributed to the poor control by permethrin. In several trials,
applications of PyGanic at higher rates and in combination with adjuvants and synergists gave only
small insignificant increases in control.
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3.10. Cabbageworms

Imported cabbageworm (ICW), cabbage looper (Trichoplusia ni) and diamondback moth (DBM)
are common insect pests of cole crops. Mixed infestations of these caterpillars can cause extensive
feeding injury on the leaves and head of cabbage, broccoli, cauliflower and other crucifers, resulting
in contaminated and unmarketable produce [113,114]. Organic insecticides are widely used as a
rescue treatment to protect cole crops against these pests. Seaman [18] lists 27 organic products
for cabbageworm control but acknowledges that only a few evaluated in trials show greater than
50% effectiveness.

We evaluated different organic insecticides in spring and fall plantings of cabbage (9 trials),
collards (5 trials) and broccoli (5 trials). ICW was the predominant cabbageworm, comprising 70%
of the infestations with densities ranging from 0.6 to 23.3 larvae per plant in untreated plots. Lower
DBM densities ranged from 0.7 to 3.6 larvae per plant but were still consistently high enough to
discern treatment differences. Feeding injury caused significant reductions in head development and
subsequent >50% losses in marketable yield in untreated plots. Because ICW was the predominant
pest, we applied the first application when adult butterflies were active and eggs were hatching. Each
insecticide was then repeated weekly either 3 or 4 times depending on the trial. Control efficacy was
indicated by the percent reduction in cabbageworm density and the percent of marketable plants at the
end of the treatment period. Broccoli heads were marketable if no caterpillars and feeding injury were
present, while cabbage heads and collard plants were marketable if only the outer leaves had minor
damage. Since treatment differences were relatively the same for the three crops, we combined the
efficacy data on each insecticide across all trials.

Figure 10 presents trial results for each caterpillar which responded differently to the treatments.
Entrust applied at the 71.2 g a.i./h rate provided consistent residual activity against both cabbageworms
in all trials, averaging 92.2% control of DBM and 96.1% control of ICW. Treated plots yielded 98% to
100% marketable cabbage/broccoli heads and collard plants at harvest compared to less than 20% in
untreated plots. Entrust provided significantly higher control efficacy than the other treatments based
on non-overlapping 95% CL. Azera was also consistently effective in reducing densities of DBM and
ICW by an average of 79.4% and 85.5%, respectively. The higher 4.68 L/h rate of Azera resulted in only
a small increase in control compared to the 2.34 L/h rate. Although Azera reduced larval densities
less in most trials compared to Entrust, 96% to 100% of the cabbage heads in Azera-treated plots were
still marketable according to organic standards. The combined effects of permethrin and azadirachtin
apparently prevented larvae from developing to older instars that bore deeper into the cabbage head
below the wrapper leaves.
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Figure 10. Percent control of cabbageworms with weekly applications of Azera, Neemix, PyGanic and
Entrust relative to the untreated control. Mean data are given for diamondback moth caterpillar and
imported cabbageworm compiled over 9 cabbage trials, 5 collard trials and 5 broccoli trials. Box-whisker
plots show the 25% and 75% percentile range of percent control data and the horizontal line in each
box is the overall mean control efficacy. Number below each plot indicates the average number of
weekly applications. Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169
mL/h, 2.34 L/h and 71.2 g a.i./h respectively, except for individual trial data in blue and red indicating
lower and higher rates, respectively. Azera and Entrust provided significantly higher control of both
cabbageworms than Neemix and PyGanic.

Control effectiveness of Neemix and PyGanic was more variable and significantly lower compared
to Azera and Entrust. Moreover, both insecticides were less effective against DBM (overall 48.6%
control) compared to ICW (overall 67.2% control). Percent of marketable plants in Neemix and
PyGanic-treated plots ranged from 59% to 83% compared to less than 20% in untreated plots. DBM
has a long history of developing resistance to many insecticide classes, including pyrethroids [113];
thus, resistance may have contributed to the low effectiveness of permethrin in PyGanic. Furthermore,
azadirachtin has minimal contact activity, so Neemix is most effective as an effective IGR when ingested
by larvae. DBM larvae feed primarily on the underside of leaves, and adult moths avoid treated
surfaces [115,116]; thus, larvae were probably less exposed to insecticide-treated surfaces. No signs of
phytotoxicity were evident with any of the treatments.

We also evaluated other organic products in a number of trials. Agree WG (841g/h) and Javelin WG
(1.7 kg and 3.4 kg/h) provided similar levels of control in four trials, averaging 78% and 82% reduction
of DBM and ICW respectively, and resulting in 71% to 84% marketable cabbage and broccoli heads. Bt
insecticides have been widely used to control lepidopteran larvae but are relatively short-lived and
more effective on early instars. Nevertheless, the control efficacy of the Bt treatments was about the
same as Azera. Treatments of Surround WP plus 1% Trilogy reduced cabbageworm densities by an
average of 51.3% across three trials. Our results corroborate the findings on cabbageworm control
by other field studies that reported 85% to 99% control with spinosad-based insecticides [117–120],
84% to 91% control with Azera [121,122], 47% to 76% control with Neemix and other azadirachtin
products [122,123] and 67% to 80% control with Bt products [120,124,125].

3.11. Alfalfa Weevil

Several curculionid species are major pests causing feeding injury to fruiting structures, leaves
and roots of organic crops. However, information on the control efficacy of organic insecticides against
these pests is very limited. Given the increased demand for organic dairy feed [126], we evaluated
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the effectiveness of different rates of Azera, Neemix, PyGanic and Entrust against the alfalfa weevil
(AW), which represents a reasonable surrogate for other weevil species. Ten trials were conducted
on separate years in alfalfa fields that were at least two years old. Treatments were initiated during
late April when leaf tip injury was first observed. Infestations consisted mainly of young larvae when
treatments were applied, averaging 26 per sweep in untreated plots. Trials received one application of
each insecticide, except for a few trials with two applications a week apart.

Entrust at the 71.2 g a.i./h rate reduced larval populations by an overall 86.8% compared to the
other insecticides that provided <30% control (Figure 11). Doubling the rate of Entrust resulted in
96% control but this higher rate may not be cost-effective for a lower-value forage crop. Although low
rates of Entrust were not tested, alfalfa can tolerate some damage, so lower rates could possibly reduce
the AW population to a tolerable level. Other studies also provide evidence that spinosad is the most
effective organic control option for AW and other curculionid species. Reddy et al. [127] evaluated six
commercially available biorational insecticides against AW larvae under laboratory conditions and
reported 100% mortality with Entrust within three days post-treatment. In field studies, Entrust, at 71.2
g a.i./h, provided 95% control of AW [54] and 77% control of pepper weevil [128].

Figure 11. Percent control of alfalfa weevil with applications of Azera, Neemix, PyGanic and Entrust
relative to the untreated control. Mean data are compiled from 10 trials on alfalfa. Box-whisker plots
show the 25% and 75% percentile range of percent control data and the horizontal line in each box is
the overall mean control efficacy. Number associated with each plot indicates the average number of
weekly applications. Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169
mL/h, 2.34 L/h and 71.2 g a.i./h respectively, except for individual trial data in red indicating higher
rates. Entrust provided significantly higher control compared to other insecticides.

The higher rates of Azera and PyGanic showed some additional suppression but still not enough
to be effective control options. Neemix was also relatively ineffective, yet laboratory studies have
shown high mortality, repellency and IGR effects of azadirachtin extracts against AW and other
curculionids [127–131]. However, our findings agree with field studies on pepper weevil that show
>30% control efficacy with Neemix [132–136]. In our trials, the antifeedant and IGR properties of
azadirachtin in Azera and Neemix would likely provide better control if multiple treatments were
applied over a longer period. However, such a treatment regime may be more expensive than a single
application of Entrust.
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3.12. Fruitworms

Several types of lepidopteran larvae are major pests of fruit and vegetable crops in organic
production. The predominant species is the corn earworm (CEW) (or tomato fruitworm) that feeds
internally near the stem end of the tomato and pepper, creating a messy, watery cavity contaminated
with excrement and cast skins [137]. The damaged tissue becomes infected with molds, and injured
fruits often rot before harvest. On sweet corn, young CEW hatching from eggs laid on silks quickly
work their way down the silk channel into the ear where they feed on the kernels at the ear tip [137,138].
Even with conventional insecticides, management of fruitworms on these host crops is problematic
due to their dispersal capability to recolonize fields after treatment, narrow window of opportunity to
apply insecticides and difficulty in obtaining adequate spray coverage and residual activity.

We evaluated the control efficacy of different organic insecticides against fruitworms in nine trials
on trellised tomato plantings and six trials on sweet corn. All trials were planted later in the growing
season to increase the chance of higher infestations. On tomato, mixed infestations consisted of CEW,
yellow-striped armyworm and variegated cutworm, together causing an average 18.6% of the fruit
damage in untreated plots across all trials. Insecticide treatments were initiated at the beginning of
fruit set and repeated weekly five times to cover the fruiting period in each trial. At 6 days following
each treatment, we harvested all ripe fruit to record the number of damaged fruits.

Figure 12 displays the individual results of the tomato trials expressed as overall percent reduction
in damaged fruit for Azera (59.4%), Neemix (51.9%), PyGanic (33.4%) and Entrust (72.3%). Entrust at
the standard rate provided the most effective control but performance varied across trials and was
not significantly different from the other insecticides according to non-overlapping 95% CL. PyGanic
was the least effective, showing a wide range of control and no consistent gain in effectiveness when
mixed with different adjuvants (Nu-Film P, BioLink). Azera and Neemix treatments gave moderate
levels of fruit protection due mainly to the antifeedant and IGR effects of azadirachtin, but results
were also variable across trials. Several trials tested low and high application rates of Azera but found
no significant differences from the standard rate. Several factors contributed to the variation across
trials. Particularly, control efficacy was dependent on how well the weekly applications coincided with
susceptible larval stages of the different fruitworm species. Canopy density of the trellis plants also
varied across trials, which probably influenced the level of spray penetration and residue coverage.
Since most trials experienced moderate infestation levels and received five weekly treatments over the
entire fruiting period, it may be difficult to achieve acceptable control of tomato fruitworms with these
insecticides under high population pressure.

In two trials, four weekly applications of Deliver at 1.1 kg/h resulted in 92.8% reduction in fruit
damage, and five weekly applications of Gemstar at 731 ml/h significantly reduced CEW-damaged
fruit by 89.5%. However, fruitworm infestations were well below economic levels in both trials. In
general, our results agree with other field studies that report reductions in fruitworm damage ranging
from 35% to 78% for Entrust, 65% to 78% for Bt products and 42% to 68% for Gemstar [128,139–142].
Neem products applied alone and in combination with pyrethrins have been evaluated to a lesser
extent for fruitworm control. Several earlier studies reported unsatisfactory control with neem seed
oil [143,144], while one study reported 46% control with Neemix [145].

In sweet corn trials, treatments were applied at 25% to 50% silking and repeated on a 2-, 3- or
4-day schedule depending on the trial and moth activity. The number of applications per trial ranged
from five to nine treatments. We sampled 50 ears per plot at fresh market maturity to determine the
percentage of ears damaged. In all trials, heavy CEW infestations caused significant kernel injury to
50% to 95% of the ears in control plots. Due to differences in spray schedules, treatments tested and
CEW population pressure, we did not combine control efficacy data across trials.
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Figure 12. Percent control of tomato fruitworms with applications of Azera, Neemix, PyGanic and
Entrust relative to the untreated control. Mean data are compiled from nine tomato trials, each receiving
five weekly applications of each insecticide. Box-whisker plots show the 25% and 75% percentile
range of percent control data and the horizontal line in each box is the overall mean control efficacy.
Application rates of Azera, Neemix, PyGanic and Entrust were 2.34 L/h, 1169 mL/h, 2.34 L/h and 71.2 g
a.i./h respectively, except for individual trial data in blue and red indicating lower and higher rates,
respectively. There were no significant differences in control among treatments.

Overall, Entrust, applied at the standard 71.2 g a.i./h rate, provided the most effective control of
CEW compared to the other treatments. Since Entrust was approved for organic use in 2003, other
studies have reported effective control with Entrust [146–149], and fact sheets on organic sweet corn
recommend Entrust as the most effective option for CEW control [15,150]. However, our results show
that ear protection with Entrust varied depending on the spray interval and number of applications.
Of the different spray schedules tested, percent reduction in ear damage averaged: 15% in 2002 (5
sprays 3 to 4 days apart), 33% in 2004 (4 sprays 3 days apart), 73% in 2005 (7 sprays 2 to 3 days apart),
92% in 2006 (9 sprays 2 days apart), 32% in 2008 (7 sprays 3 days apart) and 68% in 2009 (6 sprays 3 to 4
days apart). These results demonstrate that timing applications is critical, especially during the silking
period that may take 3 to 4 days for silks to emerge from all ears. Spinosad is broken down rapidly by
sunlight [151] and thus may have only a few days of residual activity on treated silk tissue. Besides,
treatments applied during early silk will not protect ears that expose silks later. Thus, treatments of
Entrust applied at relatively short intervals during silking (such as in the 2006 trial) are required under
high CEW pressure to achieve adequate ear protection for organic quality sweet corn.

Of other products tested, Azera, Neemix and PyGanic were relatively ineffective compared to
Entrust. The Bt product, Deliver, applied alone and mixed with vegetable oil injections in the silk tube,
also gave unsatisfactory control in a 2002 trial [152], which agrees with other studies that have shown
inconsistent results with the ear tip injection technique, when CEW pressure is high [153–155]. Because
Bt insecticides require ingestion and degrade rapidly in sunlight, trials testing foliar sprays have also
reported unsatisfactory control of lepidopteran larvae in sweet corn [147,148,156].

4. Conclusions

Our results compiled over multiple trials during different years provide the first quantitative
assessment of the range of control efficacy by Entrust, Azera, PyGanic and Neemix against the most
difficult to control insect pests in organic production. The performance of these insecticides varied
widely among pest groups, as well as among pest species within a group. Weighted for the number
of trials and averaged across all pest groups, Entrust, Azera, PyGanic and Neemix reduced pest
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infestations by an overall 73.9%, 61.7%, 48.6% and 46.1%, respectively. Entrust applied at the 71.2 g
a.i./h rate of spinosad provided >75 % control of flea beetles, Colorado potato beetle, cabbageworms
and alfalfa weevil. Nearly as effective against CPB larvae were lower rates of Entrust compared
to the standard rate. Entrust also provided better control than the other insecticides against thrips,
cucumber beetles, fruitworms and corn earworm in sweet corn, reducing infestations by >50%.
As expected, Entrust was relatively ineffective against sucking insects, particularly true bugs and
aphids. Although trial results showed that Entrust was the most effective control option for many
insect pests, field-evolved resistance to spinosad has occurred in a number of insect pests, especially
diamondback moth, several thrips species and Colorado potato beetle [157]. For example, there is
evidence of high-level CPB resistance to spinosad on organic potato farms, after repeated overuse of
Entrust [158,159]. For this reason, whenever possible, organic farmers should consider using other
classes of insecticides in rotation with Entrust to reduce the risk of resistance development.

The combination of azadirachtin and pyrethrin in Azera at the rate of 2.34 L/h ranked second
in overall performance, providing >75% control of green peach aphid, flea beetles, Japanese beetle,
Mexican bean beetle, potato leafhopper and cabbageworms. Azera tested at higher rates or at shorter
spray intervals provided 10% to 20% additional control of true bugs, flea beetles, Japanese beetle
and potato leafhoppers. Azera was generally more effective against pest infestations comprised of
both adult and immature stages, which allowed for the combined direct toxicity, behavioral and
physiological effects of both active ingredients. Pyrethrin in PyGanic at the 2.34 L/h rate was less
effective but still provided overall >75% control of green peach aphid, flea beetles and potato leafhopper.
In general, higher rates of PyGanic or the addition of adjuvants did not consistently increase control of
most pest groups. The repellency, antifeedant and growth inhibition effects of azadirachtin in Neemix
provided >75% control against Mexican bean beetle and >60% control against Colorado potato beetle
larvae, even at the lower rate. Arguably, Neemix would be more effective against pest groups in
infestations consisting mainly of developing immature stages. However, adults were the predominate
stage in most trials and thus subject only to the repellent and antifeedant effects of azadirachtin.

There are some noteworthy caveats when applying these findings. First, organic farmers use
insecticides only as a last resort after all nonchemical methods have been explored. This management
scenario frequently involves higher infestations of older insect stages compared to the younger age
structure of infestations that triggered treatments in our trials. Thus, control efficacy of insecticides
applied as a rescue treatment against older infestations may be lower than the levels reported here.
Secondly, the spatial scale of our trials was conducive to movement of adults among small plots
during the treatment period, which was an issue with highly mobile pests, such as thrips, flea beetles,
cucumber beetles and potato leafhoppers. Possibly, the control efficacy of the insecticides could be
higher when applied to whole fields, where there is less chance of insects re-invading the treated
area from outside or from untreated control plots. Thirdly, we arbitrarily implied above that >75%
reduction in the pest population provided acceptable control by the organic insecticide. Caldwell et
al. [15] also defines ’good control’ of an organic insecticide as a statistically significant reduction in pest
density or damage by 75% or more compared to the untreated control. However, we would argue that
lower levels of control may be acceptable to many organic farmers depending on their production
goals and quality standards for organic product marketability. For example, several insecticides
reduced pest densities by <75%, but more than 90% of the crop was still marketable according to
organic standards. Finally, insecticides were applied in all trials when the target pest infestation was
high enough to eventually cause economic damage, followed by fixed weekly treatments that were
not applied according to any threshold of pest activity. Unquestionably, there were trials on certain
pest groups, wherein fewer applications would have been necessary to provide acceptable control.
For example, one or two properly timed applications of Entrust or Azera could provide acceptable
control of Colorado potato beetle, Mexican bean beetle or cabbageworms. Thus, further investigations
should be undertaken to determine the minimum number of applications, spray interval and costs
associated for each insecticide regimen in order to provide acceptable control of each pest group.
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The number of applications would depend on the pest population density, pest susceptibility to the
particular insecticide, duration of crop stages vulnerable to pest injury and the benefit/cost ratio of each
application. Furthermore, future research should examine how to incorporate organic insecticides
with different modes of action into treatment rotations that maximize the direct toxicity and indirect
behavioral and physiological effects on insect pests. Although our trials were not designed to evaluate
the best management strategy, knowledge of the range and overall control efficacy of each insecticide
reported here will help pest management practitioners and organic farmers choose the most effective
product to manage each pest group.
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